4th Grade Fraction Unit | Compare, Equivalent, Add/Subtract, Multiply | Digital

Teacher-Author is updating the video. This may take several hours to complete.
Grade Levels
4th, Homeschool
Resource Type
Formats Included
  • Zip
  • Google Apps™
100 pages
List Price:
You Save:
List Price:
You Save:
Share this resource
Includes Google Apps™
The Teacher-Author indicated this resource includes assets from Google Workspace (e.g. docs, slides, etc.).

Also included in

  1. Perfect for guided math and math workshop! This 4th Grade Math Bundle is a year long resource for conceptual math instruction in math workshop or guided math. There are eight units that are each centered around a different mathematical concept: 1. Place Value and Rounding; 2. Addition and Subtractio
    Save $20.44


Help your students to develop a conceptual understanding of fractions with this 7 week fraction unit! Students will further their understanding of fractions, as well as compare fractions, generate equivalent fractions, add and subtract fractions, and multiply fractions.

All detailed lesson plans are written in an easy to follow format. The lessons are written to give students a solid foundation of the concept of fractions through engaging and hands-on lessons. In this unit you will find performance tasks to conceptually teach new skills through the workshop model, as well as work station activities and games for review.


What's Included?

-Unit at a Glance

-35 Lesson Plans that include performance tasks

-35 Skill Building Worksheets

-Answer Keys

Pg. 3 Teacher Notes

Pg. 4-5 Lesson 1-Equal Parts

Pg. 6-7 SP-Finding Equal Parts

Pg. 8-10 Lesson 2-Fraction Pizza

Pg. 11-12 SP-Fractions in a Set

Pg. 13-15 Lesson 3-More or Less Than One

Pg. 16-17 SP-Label the Fractions

Pg. 18-19 Lesson 4-Mixed Numbers

Pg. 20-21 SP-Number Line Cut and Paste

Pg. 22-23 Lesson 5-Fraction Size

Pg. 24 SP-Spin the Fraction

Pg. 25-26 Lesson 6-Fraction Line Up

Pg. 27-28 SP-Comparing Bar Fractions

Pg. 29-30 Lesson 7-Comparing Fractions

Pg. 31-32 SP-Shade and Compare Fractions

Pg. 33-34 Lesson 8-Problem Solving With Fractions

Pg. 35-36 SP-Comparing Fractions

Pg. 37-48 Lesson 9-Rolling Fractions

Pg. 39-40 SP-Fraction Word Problems

Pg. 41-42 Lesson 10-Fraction Skittles

Pg. 43-44 SP-Fraction Word Problems 2

Pg. 45-46 Lesson 11-Finding Fraction Equivalencies

Pg. 47-48 SP-Equivalent Fraction Bars

Pg. 49-50 Lesson 12-3 Missing Numbers

Pg. 51-52 SP-Shade and Find the Equivalent Fraction

Pg. 53-54 Lesson 13-3 Partitioning Squares

Pg. 55-56 SP-Missing Numbers

Pg. 57-59 Lesson 14-Fraction Problem Solving

Pg. 60-61 SP-Generating Equivalent Fractions

Pg. 62-63 Lesson 15-Pattern Block Fractions

Pg. 64-65 SP-Fraction Mystery Picture

Pg. 66-67 Lesson 16-Fraction Brownies

Pg. 68-69 SP-Fraction Review

Pg. 70-71 Lesson 17-Fraction Games

Pg. 72-73 SP-Decompose the Fraction

Pg. 74-76 Lesson 18-Fraction Quilts

Pg. 77-78 SP-More Decomposing Numbers

Pg. 79-81 Lesson 19-Adding & Subtracting Problem Solving

Pg. 82-83 SP-Adding Fractions

Pg. 84-87 Lesson 20-Pizza Fractions

Pg. 88-89 SP-Subtracting Fractions

Pg. 90-91 Lesson 21-Multiplication in Context

Pg. 92-93 SP-Repeated Addition

Pg. 94-95 Lesson 22-Explaining the Algorithm

Pg. 96-97 SP-Basic Multiplication

Pg. 98-100 Lesson 23-Fraction Pizza

Pg. 101-102 SP-More Multiplication

Pg. 103-104 Lesson 24-Field Trip Dilemma

Pg. 105-106 SP-Multiplying Fractions

Pg. 107-110 Lesson 25-Playground Design

Pg. 111-112 SP-Multiplication Word Problems


Check out these other 4th Grade Math Units!

Unit 1 Place Value and Rounding Unit

Unit 2 Addition and Subtraction Unit

Unit 3 Multiplication Unit

Unit 4 Division Unit

Unit 5 Fraction Unit

Unit 6 Decimal Unit

Unit 7 Geometry Unit

Unit 8 Measurement Unit


Standards Taught

4.NF.1. Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

4.NF.2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

4.NF.3 3. Understand a fraction a/b with a > 1 as a sum of fractions 1/b.

a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: 3/8 = 1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8.

c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.

d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

4.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

a. Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4).

b. Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express 3 × (2/5) as 6 × (1/5), recognizing this product as 6/5. (In general, n × (a/b) = (n × a)/b.)

c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Lessons Include: standard, materials, mini lesson, work time, closing, intervention, extension, essential questions, and formative assessments.

Total Pages
100 pages
Answer Key
Teaching Duration
1 month
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.


Questions & Answers


Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

More About Us

Keep in Touch!

Sign Up