Big Science 3 P. Table 20 Specific Heat Capacity of Metals vs. Nonmetals

Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Big Science 3  P. Table 20  Specific Heat Capacity of Metals vs. Nonmetals
Grade Levels
Product Rating
3.0
1 rating
File Type

PDF (Acrobat) Document File

Be sure that you have an application to open this file type before downloading and/or purchasing.

412 KB|6 pages
Share
Product Description
This is an excerpt from Amazon's popular line of Bossy Brocci Math and Big Science workbooks! [it's pronounced like "Brawsee"]

Printing should be done in Landscape and DOUBLE-SIDED, with the flip being along the 'SHORT' side.

Want MORE Power for your Dollar?
Give Brocci Bundles a Try before you buy!

================================================

Most ELA, Math and Science teachers don't have more than 100

State Tests on their shoulders - and they enjoy anywhere from 60 to

90 minutes to teach their class. But I've been whipping the

State while teaching an average of 110 students per year - and

with only about 38 minutes for science class!

It's a matter of public record:

I've crushed the State by 17 to 32 points, and by an average

of 23 points over a 5-year stretch.

And I'm North Carolina's 2016 Top-Scoring Science Teacher.


I've done it with:

No Teaching Assistants,

No Tutors,

No Remediation Class,

and No Test-Prep books or programs.


So what are my kids learning, doing and using?

Bossy Brocci worksheets.

================================================

Students will:

1) Calculate & Record the Percent distribution in categories comparing Metal versus Nonmetal Specific Heat Capacity:

Percent of Nonmetals with a Lower Specific Heat Capacity than the Average Metal Specific Heat Capacity
Percent of Nonmetals with a Higher Specific Heat Capacity than the Average Metal Specific Heat Capacity

Percent of Metals with a Lower Specific Heat Capacity than the Average Nonmetal Specific Heat Capacity
Percent of Metals with a Higher Specific Heat Capacity than the Average Nonmetal Specific Heat Capacity

2) Answer 11 Multiple-choice questions based on their Calculations & Observations
3) Fill-in a Generalizations Table about Metals vs. Nonmetals' Specific Heat Capacity, with select phrases based on analysis of their Quantitative data
4) Fill-in a Total of 20 cells with Data & Text in 2 different Tables
5) Be compelled to present their work in a neat & orderly format
6) Be trained to know the trend between Metal and Nonmetal Specific Heat Capacity methodically & systematically


Printing should be done in Landscape and double-sided, with the flip being along the 'short' side


Hey . . . if you really want to go Ape$#!+ on Specific Heat,
then try also buy this boffo lesson:
Big Science 6 Water's Props 08 Water's High Specific Heat Capacity
It's filled with Graphs, Equations and assessment up the A$$!


================================================

NOTE: As far as GENERALIZING about Metals versus Nonmetals through hands-on inquiry . . . it's overrated and inefficient for mastering Fundamental science knowledge (says the Science Teacher in me), and it's often erroneous or illegitimate in its powers of generalization or conclusion (says the Organic Chemist in me). Testing a sample of aluminum or copper for electrical conductivity, versus a sample of cork or rubber does NOT prove that Metals are better conductors than NONmetals!

Our students can't make viable conclusions or generalizations based on "experiments" that lack repetition (depth), and adequate sample size or diversity (breadth).

Generalizations are the foundations of good Science - and they are predicated on a heaping pile of inductive evidence.

Thus, my approach is to enable students to draw accurate conclusions and make legitimate generalizations - by using ALL the data from ALL the elements. It's still inquiry, just legitimate & accurate statistical inquiry.

I've already done the tedious sorting and counting.

Your students will now calculate the fully-representative Percent distributions.

Your students still discover or reveal evidence and trends about Metals and Nonmetals.

Your students can now draw the accurate conclusions and make the legitimate generalizations that good Science is built upon.

And you just saved yourself a lot of time and headache!

================================================




Science Chemistry Periodic Table of Elements Periodic Table Structure Periodic Table Logic Periodic Table Trends Periods Groups Families Elements Physical Properties Atomic Radius Size Density Melting Point Boiling Point Specific Heat Capacity Electrical Conductivity Thermal Conductivity Chemical Properties Electronegativity Ionization Energy Reactivity Main-Group Elements Main Group Elements Alkali Metals Alkaline Metals Halogens Noble Gases Lewis Dot Valence Electrons Bonding Comparing Metals Nonmetals Metalloids Transition Metals
Total Pages
6 pages
Answer Key
Included
Teaching Duration
N/A
Report this Resource
Loading...
$1.00
Digital Download
More products from Bossy Brocci Math and Science
Product Thumbnail
$0.00
Product Thumbnail
$0.00
Product Thumbnail
$0.00
Product Thumbnail
$0.00
Product Thumbnail
$0.00
$1.00
Digital Download
Teachers Pay Teachers

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

Learn More

Keep in Touch!

Sign up