DNA Replication Rap

DNA Replication Rap
Resource Type
Product Rating
2 ratings
File Type

Unknown Format

Be sure that you have an application to open this file type before downloading and/or purchasing.

55 MB
Product Description
A musical description of DNA Replication, focusing first on the big picture (complementary base pairing) and then on the details of how enzymes (helicase, DNA polymerase, primase, ligase) carry out the DNA replication process. The difference between leading and lagging strand replication is also addressed.

Please preview this video on YouTube at
before purchasing

DNA's structure, with its bases complementary ,
Makes replication easy, but not quite elementary
Since A only bonds with T and C with G,
The double helix seems to copy naturally,

or as Crick and Watson said: (PAUSE BEAT)

"It has not escaped our notice
that that the specific pairing
we have postulated
immediately suggests
A possible copying mechanism
for the genetic material."

You first unzip the DNA in one or more places,
Breaking hydrogen bonds to separate the bases.
Each resulting single strand serves as a template,
Allowing enzymes to replicate

New strands with complementary bases that match
And through hydrogen bonds these bases attach
Each nucleotide now bonds to the next
Through a sugar-phosphate bond they connect

Meselsohn and Stahl proved in '58
That this is how the double helix replicates
One strand new, the parent strand preserved,
In other words the whole thing is semi-conserved,


Now let's see how replication really goes,
With blind, mindless enzymes controlling the show.
Made more complex by something you can see
Each DNA strand has directionality

5 prime to 3 is how the enzymes go,
(Just refer to the carbons in deoxyribose)
So when a new strand is synthesized
Nucleotides get added on the 3 prime side

The process begins with helicase,
Which opens up the helix at a special place
Breaking hydrogen bonds at the origin,
A sequence telling helicase where to begin

A replication fork is now composed,
Where both parent strands have their bases exposed
And to keep the double helix from rewinding,
Single strand proteins come in and start binding.

Note two forks always form when DNA doubles,
The whole thing's called a replication bubble
Now it's primase's turn, the next enzyme
To come to the origin at this time

Primase lays down a primer of RNA,
Complementary to the template DNA.
Setting the stage for the star of our show
DNA polymerase, now set to go.

DNA polymerase's job is to add
Deoxyribonucleotides to a growing strand.
But polymerase needs a growing strand in place,
Which is why initiation is the job of primase.

What happens now is simple, it's a replication race,
As polymerase follows helicase,
As the fork opens up, replication proceeds,
With nucleotides added at incredible speed.


What we've said applies to the leading strand
Where replication's smooth, continuous and grand,
But on the second strand, fork opens 3 to 5:
a direction where polymerase can't polymerize

So instead of following helicase,
Polymerase moves away from the forking place
So replication's lagging, and fragmentary
As discovered in '66 by Okazaki

So the lagging DNA's filled with Okazaki fragments,
And RNA primers, and to clean up this mess,
Polymerase 1 removes the primer,
Puts deoxyribonucleotides in what could be finer?

And now the fragments need to be connected,
So the new DNA can be perfected,
Ligase carries out this function with pride,
Sealing sugar-phosphate bonds between nucleotides

Total Pages
Answer Key
Teaching Duration
Report this Resource
Digital Download
More products from sciencemusicvideos
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail
Digital Download
Teachers Pay Teachers

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

Learn More

Keep in Touch!

Sign up