Division with Remainders: Interpreting Remainders

Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
Division with Remainders: Interpreting Remainders
File Type
PDF (1 MB|29 pages)
Standards
$3.25
Digital Download
Share this resource
More products fromΒ Elementary Brown-ies
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail
$3.25
Digital Download
  • Product Description
  • Standards
Students will work in pairs or groups to solve division word problems. After students solve the word problems, they will reason to interpret how the remainder affects the work problem. Does the remainder need to be ignored, rounded up, or does the question specifically ask for the leftovers?

Activity pack includes:

12 Division Word Problem Task Cards
Instruction Poster
3 Sorting Mats: IGNORE, ROUND UP, LEFTOVER
Student Work Recording Sheet
Answer Keys
Blackline Versions
Log in to see state-specific standards (only available in the US).
Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (𝑦 – 2)/(π‘₯ – 1) = 3. Noticing the regularity in the way terms cancel when expanding (π‘₯ – 1)(π‘₯ + 1), (π‘₯ – 1)(π‘₯Β² + π‘₯ + 1), and (π‘₯ – 1)(π‘₯Β³ + π‘₯Β² + π‘₯ + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
Total Pages
29 pages
Answer Key
Included
Teaching Duration
90 minutes
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.
Loading...

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

More About Us

Keep in Touch!

Sign Up