Easel by TpT
DID YOU KNOW:
Seamlessly assign resources as digital activities

Learn how in 5 minutes with a tutorial resource. Try it Now  

Graphing Functions with Tables, Graphs, and Equations Card Sort

Grade Levels
8th, Homeschool
Standards
Formats Included
  • PDF
Pages
14 pages
$6.00
$6.00
Share this resource

Also included in

  1. A GROWING bundle of 8th Grade Card Sort Activity Lessons and Cut & Paste Activities for 20% off the original price!Any time I add a new math card sort activity lesson to this bundle, the price will go up so it remains 20% off (but once you buy it, you'll be able to download any new lessons I add
    $57.60
    $72.00
    Save $14.40
  2. A GROWING bundle of 6th, 7th, and 8th Grade Card Sort Activity Lessons and Cut & Paste Activities for 30% off the original price!Any time I add a new math card sort activity lesson or cut & paste activity to this bundle, the price will go up so it remains 30% off (but once you buy it, you'll
    $215.00
    $318.00
    Save $103.00
  3. 8th Grade Math Curriculum is a GROWING bundle that includes all Interactive Math Notebook Activities, Math Station Activities, Foldable notes, NO PREP Math Packets, Write the Room with Math, & Card Sort activities for 8th Grade Math in my store.This bundle currently includes $332.00 worth of mat
    $250.00
    $340.50
    Save $90.50

Description

This lesson unit is intended to help you assess how well students are able to assess and graph functions in tables, graphs, and equations.

Included in this lesson are:

  • Directions, grade level common core standards, and mathematical practices
  • Formative assessment (pre-test) task
  • Card sort activity with concept development of functions
  • Extension activity for students to deepen their understanding of functions
  • Summative assessment (post-test) task
  • Answer keys for all the assessments and activities

More Card Sorts:

8th Grade Math Card Sort Activity Lessons and Cut & Paste Activity BUNDLE

******************************************************************************************************************************************************

LEAVE FEEDBACK on this product and earn 6 TPT credits to use on future purchases!

FOLLOW ME to get new product notifications, SALE notices, and freebies!

This purchase is for ONE teacher ONLY. Additional teachers must purchase their own license. You may not upload this resource to the internet in any form. If you are a coach, principal or district interested in purchasing several licenses, please contact me for a district-wide quote at kellymccowntpt@hotmail.com

For more teaching ideas visit www.kellymccown.com.

Total Pages
14 pages
Answer Key
Included
Teaching Duration
2 hours
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.

Standards

to see state-specific standards (only available in the US).
Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression 𝑥² + 9𝑥 + 14, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(𝑥 – 𝑦)² as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers 𝑥 and 𝑦.
Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
Interpret the equation 𝘺 = 𝘮𝘹 + 𝘣 as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function 𝘈 = 𝑠² giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Reviews

Questions & Answers

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

More About Us

Keep in Touch!

Sign Up