29 Downloads

Math Properties Poster

Math Properties Poster
Subject
Grade Levels
File Type

PDF

(222 KB|1 page)
Product Rating
Standards
  • Product Description
  • StandardsNEW

This is a reference sheet used to help students understand properties od Addition and Multiplication. The Communicative, Associative and Distributive Property are color coded to help students notice patterns.

Log in to see state-specific standards (only available in the US).
Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (𝑦 – 2)/(π‘₯ – 1) = 3. Noticing the regularity in the way terms cancel when expanding (π‘₯ – 1)(π‘₯ + 1), (π‘₯ – 1)(π‘₯Β² + π‘₯ + 1), and (π‘₯ – 1)(π‘₯Β³ + π‘₯Β² + π‘₯ + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 Γ— 8 equals the well remembered 7 Γ— 5 + 7 Γ— 3, in preparation for learning about the distributive property. In the expression π‘₯Β² + 9π‘₯ + 14, older students can see the 14 as 2 Γ— 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 – 3(π‘₯ – 𝑦)Β² as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers π‘₯ and 𝑦.
Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + 𝘹) to produce the equivalent expression 6 + 3𝘹; apply the distributive property to the expression 24𝘹 + 18𝘺 to produce the equivalent expression 6 (4𝘹 + 3𝘺); apply properties of operations to 𝘺 + 𝘺 + 𝘺 to produce the equivalent expression 3𝘺.
Total Pages
1 page
Answer Key
N/A
Teaching Duration
1 Week
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.
Loading...
Share this resource
Report this resource to TpT
More products fromΒ Marisa MacDonald
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail
Product Thumbnail

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

Learn More

Keep in Touch!

Sign Up