Subject

Resource Type

File Type

Presentation (Powerpoint) File

Product Rating

Standards

CCSSMP8

CCSSMP7

CCSSMP5

CCSSMP2

CCSSMP1

- Product Description
- StandardsNEW

This Jeopardy style, interactive game is the perfect review for math! This game reviews mental math strategies for adding and subtracting 2,3,&4 digit numbers. Strategies include breaking apart, compensation, and counting on. It also includes answers and teaching suggestions. Give your students a fun and engaging practice day! You can find many other math Jeopardy games on my store that match the 4th grade EnVisions curriculum.

Log in to see state-specific standards (only available in the US).

CCSSMP8

Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (π¦ β 2)/(π₯ β 1) = 3. Noticing the regularity in the way terms cancel when expanding (π₯ β 1)(π₯ + 1), (π₯ β 1)(π₯Β² + π₯ + 1), and (π₯ β 1)(π₯Β³ + π₯Β² + π₯ + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

CCSSMP7

Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 Γ 8 equals the well remembered 7 Γ 5 + 7 Γ 3, in preparation for learning about the distributive property. In the expression π₯Β² + 9π₯ + 14, older students can see the 14 as 2 Γ 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 β 3(π₯ β π¦)Β² as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers π₯ and π¦.

CCSSMP5

Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

CCSSMP2

Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

CCSSMP1

Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Total Pages

28 pages

Answer Key

Included

Teaching Duration

N/A

Report this Resource to TpT

Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpTβs content guidelines.