Easel by TpT

Number Talk Task Cards

Lyndsey Kuster
Grade Levels
1st - 2nd
Resource Type
Formats Included
  • PDF
225+ Brain Boosts™
List Price:
You Save:
List Price:
You Save:
Share this resource
Lyndsey Kuster


Do you have questions about this resource? Message me instantly by clicking HERE!

Please note: The materials in this resource are the same ones included in the LK Teacher Club Membership. If you are a member of the club, please do not purchase these. Thank you!

Brain Boosts™ are challenges to help get your students’ minds moving. This is the math edition.

Included in the bundle:

  • 225+ Brain Boosts™ – vary in level of difficultly; some are more difficult to solve than others
  • Math Mind Mat -This can be used as a work space for students to show their thinking. Students can write down the strategies they used to solve the problem.
  • Labels for organizational purposes

Why Use Brain Boosts™?

The real truth is: students who lack a strong number sense have trouble developing the foundation needed for even simple math. Number sense develops through the exploration of numbers, visualizing numbers, and relating to numbers in different ways.

Brain Boosts™ encourage students to think critically and persevere in problem solving. Each task asks students to explain to themselves the meaning of a problem and to look for entry points to its solution. The ultimate goal is to encourage students to build their own toolkit for solving problems, and Brain Boosts™ do just that!

Brain Boosts™ can be used in the following ways:

  • whole group instruction
  • number talks/morning meeting/calendar time
  • small group instruction
  • early finisher activity
  • center/station math activity
  • extension activity
  • enrichment activity

Be sure you give students ample opportunities to tackle these problems without explicitly teaching them how to solve them. In other words, if you choose to work through these during whole group instruction or small group instruction time, leave plenty of time for thinking, exploration, discussion, and reflection. The key is to provide a lot of prompting and support without explicitly teaching them how to solve the problems.

Organizational Tips:

To store the materials, I purchased IRIS Greeting Card and Craft Keeper bins. I purchased them from Michael’s. You can also find them at Joann’s, Amazon, and many other stores online and in-store. If you buy them in person, be sure to bring a coupon to get an extra discount on your purchase!

All labels to organize the Brain Boosts™ are included in this bundle.

When printing the Brain Boosts™, my tip is to print them on colored cardstock to match the divider labels. This is a hassle-free way to keep the materials organized!

The divider labels have the title of each activity on them, along with the standard/skill (in the bottom right corner).

*If you choose to use different storage bins than the ones I've suggested, I've included additional labels in this bundle for you!*

Want access to a library of free resources for K-2 students? Join the free VIP Resource Library here!

Come join my private group to connect and collaborate with other primary teachers! Join here!

Total Pages
225+ Brain Boosts™
Answer Key
Teaching Duration
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.


to see state-specific standards (only available in the US).
Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.


Questions & Answers

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

More About Us

Keep in Touch!

Sign Up