Easel by TpT
DID YOU KNOW:
Seamlessly assign resources as digital activities

Learn how in 5 minutes with a tutorial resource. Try it Now  

Protractor Practice | Supplementary & Complementary CtC | Distance Learning

Grade Levels
4th - 7th
Standards
Formats Included
  • PDF
Pages
11 pages
$4.00
$4.00
Share this resource

Also included in

  1. Protractor Practice-Crack the Code BUNDLED! is the perfect way to give your class that much needed practice reading protractors. In addition to the four separate resources listed below, this bundle also includes an additional puzzle, available here only.9-2018 Update! The original puzzles now also i
    $8.50
    $10.75
    Save $2.25
  2. Math Practice Activities Crack the Code Super Bundle for grades 5-7 includes over 40 Crack the Code self-checking puzzles practicing a variety of math skills. Many of the selections are differentiated so that all ability levels are challenged. These fun activities are loaded with mental math and p
    $58.95
    $65.50
    Save $6.55

Description

Protractor Practice: Extend Your Thinking - Crack the Code includes TWO fun activities, loaded with mental math and problem solving opportunities beyond the usual reading of the protractor starting with 0º. These puzzles include extensions for supplementary and complementary angles, as well as a separate angle search extension. Includes answer keys.

Please Note: These activities are designed to give students practice reading angles, not measuring them with real protractors. They need to use the protractor provided, and devise a way to extend the rays that do not touch that protractor. The problem solving has them adding and subtracting to find the measurements, using what they know about acute and obtuse angles.

Each Protractor Practice activity has several rays all starting in the same place, which muddies the point of origin, leading to inaccurate measurements, if students try to use a real protractor.

Ways to use Crack the Code puzzles~

Centers • Go-to Activities • Fun Class Challenge • Test Prep • Small Group Challenges • Homework • Sub Days • RTI

Quotes:

“If we did all the things we are capable of, we would literally astound ourselves.” Thomas A. Edison (supplementary angles extension)

“To be yourself in a world that is constantly trying to change you is the greatest accomplishment.” Ralph Waldo Emerson (complementary angles extension)

Be sure to download the preview to see exactly what's included.

Click HERE for additional Crack the Code puzzles.

***************************************************************************

Customer Tips:

How to get TpT credit to use on future purchases:

Please go to your My Purchases page (you may need to login). Beside each purchase you’ll see a Provide Feedback button. Simply click it and you will be taken to a page where you can give a quick rating and leave a short comment for the product. Each time you give feedback, TpT gives you feedback credits that you use to lower the cost of your future purchases. I value your feedback greatly, as it helps me determine which products are most valuable for your classroom, so I can create more for you.

Be the first to know about my new discounts, freebies and product launches:

Look for the green star next to my store logo and click it to become a follower. Voila! You will now receive email updates about this store!

***************************************************************************

© 2015 Pamela Kranz All Rights Reserved

Total Pages
11 pages
Answer Key
Included
Teaching Duration
N/A
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.

Standards

to see state-specific standards (only available in the US).
Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (𝑦 – 2)/(𝑥 – 1) = 3. Noticing the regularity in the way terms cancel when expanding (𝑥 – 1)(𝑥 + 1), (𝑥 – 1)(𝑥² + 𝑥 + 1), and (𝑥 – 1)(𝑥³ + 𝑥² + 𝑥 + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Reviews

Questions & Answers

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

More About Us

Keep in Touch!

Sign Up