Ten Frame Task Cards- 1st Grade Fall

Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
Ten Frame Task Cards- 1st Grade Fall
File Type

PDF

(17 MB|37 pages)
Product Rating
4.0
(19 Ratings)
Standards
  • Product Description
  • StandardsNEW

Task cards can be used in a classroom in so many ways! This resource is the perfect addition to a math center or it can be used as a review game, for whole class instruction or even a gallery walk!

These ten frame fall task cards allow students to explore addition and subtraction word problems within 20 and align with several 1st and 2nd Grade Common Core State Standards and Mathematical Practices.

This resource includes two sizes of 24 task cards along with a recording sheet and answer guide.

Also Included:

-Ten Frame Anchor Charts

-Festive Blank Ten Frames and Manipulative/ Counter Pieces

-A Guide Explaining 4 ways to use Task Cards in a Classroom

Keywords: ten frame task cards fall, fall task cards

Log in to see state-specific standards (only available in the US).
Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.
Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
Total Pages
37 pages
Answer Key
Included
Teaching Duration
N/A
Report this Resource to TpT
Reported resources will be reviewed by our team. Report this resource to let us know if this resource violates TpT’s content guidelines.
Loading...
$2.50
Digital Download
Share this resource
Report this resource to TpT

Teachers Pay Teachers is an online marketplace where teachers buy and sell original educational materials.

Learn More

Keep in Touch!

Sign Up